30 research outputs found

    Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients

    Get PDF
    This is the post-print version of the final paper published in Computers & Mathematics with Applications. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.This paper presents new formulations of the radial integration boundary integral equation (RIBIE) and the radial integration boundary integro-differential equation (RIBIDE) methods for the numerical solution of two-dimensional diffusion problems with variable coefficients. The methods use either a specially constructed parametrix (Levi function) or the standard fundamental solution for the Laplace equation to reduce the boundary-value problem (BVP) to a boundary–domain integral equation (BDIE) or boundary–domain integro-differential equation (BDIDE). The radial integration method (RIM) is then employed to convert the domain integrals arising in both BDIE and BDIDE methods into equivalent boundary integrals. The resulting formulations lead to pure boundary integral and integro-differential equations with no domain integrals. Furthermore, a subdomain decomposition technique (SDBDIE) is proposed, which leads to a sparse system of linear equations, thus avoiding the need to calculate a large number of domain integrals. Numerical examples are presented for several simple problems, for which exact solutions are available, to demonstrate the efficiency of the proposed approaches

    A topological optimization procedure applied to multiple region problems with embedded sources

    Get PDF
    The main objective of this work is the application of the topological optimization procedure to heat transfer problems considering multiple materials. The topological derivative (DT) is employed for evaluating the domain sensitivity when perturbed by inserting a small inclusion. Electronic components such as printed circuit boards (PCBs) are an important area for the application of topological optimization. Generally, geometrical optimization involving heat transfer in PCBs considers only isotropic behavior and/or a single material. Multiple domains with anisotropic characteristics take an important role on many industrial products, for instance when considering PCBs which are often connected to other components of different materials. In this sense, a methodology for solving topological optimization problems considering anisotropy and multiple regions with embedded heat sources is developed in this paper. A direct boundary element method (BEM) is employed for solving the proposed numerical problem.CNPQ – Brazil through the Science without Borders program and from Brunel University

    Experimental and numerical investigation of an air-to-water heat pipe-based heat exchanger

    Get PDF
    An experimental and analytical investigation was conducted on an air-to-water heat exchanger equipped with six wickless heat pipes (thermosyphons) charged with water as the working fluid. The flow pattern consisted of a double pass on the evaporator and condenser sections. The six thermosyphons were all made from carbon steel, measured 2m in length and were installed in a staggered arrangement. The objectives of the reported experimental investigation were to analyse the effect of multiple air passes at different air inlet temperatures (100 to 250°C) and air mass flow rates (0.05 to 0.14kg/s) on the thermal performance of the heat exchanger unit including the heat pipes. The results were compared with a CFD model that assumed the heat pipes were solid rods with a constant conductivity. The conductivity of the pipes was extracted from modifications of correlations available in the literature based around the theory of Thermal Resistance. The results proved to be very accurate within 10% of the experimental values

    Comparison of flow and dispersion properties of free and wall turbulent jets for source dynamics characterisation

    Get PDF
    The objective of this paper is to provide an investigation, using large eddy simulations, into the dispersion of aircraft jets in co-flowing take-off conditions. Before carrying out such study, simple turbulent plane free and wall jet simulations are carried out to validate the computational models and to assess the impact of the presence of the solid boundary on the flow and dispersion properties. The current study represents a step towards a better understanding of the source dynamics behind an airplane jet engine during the take-off and landing phases. The information provided from these simulations can be used for future improvements of existing dispersion models

    Modelling the Interfacial Flow of Two Immiscible Liquids in Mixing Processes

    Get PDF
    This paper presents an interface tracking method for modelling the flow of immiscible metallic liquids in mixing processes. The methodology can provide an insight into mixing processes for studying the fundamental morphology development mechanisms for immiscible interfaces. The volume-of-fluid (VOF) method is adopted in the present study, following a review of various modelling approaches for immiscible fluid systems. The VOF method employed here utilises the piecewise linear for interface construction scheme as well as the continuum surface force algorithm for surface force modelling. A model coupling numerical and experimental data is established. The main flow features in the mixing process are investigated. It is observed that the mixing of immiscible metallic liquids is strongly influenced by the viscosity of the system, shear forces and turbulence. The numerical results show good qualitative agreement with experimental results, and are useful for optimisating the design of mixing casting processes

    Three efficient numerical models to analyse the step problem in shallow water

    Get PDF
    In this paper, the problem of acoustic wave propagation in a waveguide of infinite extent is modelled, taking into account constant depth in each section of the sea. Efficient numerical strategies in the frequency domain are addressed to investigate two-dimensional acoustic wave propagation in a shallow water configuration, considering a step in the rigid bottom and a flat free surface. The time domain responses are obtained by means of an inverse Fast Fourier Transform (FFT) of results computed in the frequency domain. The numerical approaches used here are based on the Boundary Element Method (BEM) and the Method of Fundamental Solutions (MFS). In the numerical models only the inclined or vertical interface between the sub-regions of different depth are discretized, as Green׳s functions that take into account the presence of free and rigid surfaces are used. These Green׳s functions are obtained either by eigenfunction expansion or by Ewald׳s method. A detailed discussion on the performance of these formulations is carried out, with the aim of finding an efficient numerical formulation to solve the step problem in shallow water

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript
    corecore